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Electric Power Grids
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Energy Use in the US - 2018
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U.S. Generation and Transmission

Largest running machine
in the world

o 9,200 Generating Units

o 1,000,000 MW of
Generating Capacity

o 300,000 Miles of
Transmission Lines

o 150,000 Miles of
Transmission Lines > 230kV

o 99.97% Reliable

United States
transmission grid
Source: FEMA




Before Electrification, the World
Was Lit by Fire




Physical Rules for the Electric Grid
(1820s-60s)
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Edison,Tesla & Westinghouse -
(“War of the Currents” — 1880s-90s) l

Direct Current (DC) Alternating Current (AC)



US Electricity Consumption: 1900-2015
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Major Components of Traditional Grid
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Major Components of Traditional Grid
(this model is being disrupted)

| "‘ | | ’
y oy < ;
| W "
Oy - \ -,‘w {m\.‘,“
R bee 1 | =
5 - 0 i
3 S
bl
-

: ’ 1 — . B
Generators Transmission % Distfibution= .8
- Network Network

765 kV-110 kV 34.5kV-110V




... Ripe for Innovation

e |f Alexander Graham Bell were somehow transported to the 21st
century, he would not begin to recognize the components of
modern telephony — mobile networks, smart phones, etc.

much of the grid.




Smart Grid - Motivation

SMARTGRID ' : !




Smart Grid — “The Internet of Energy’
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Consumers

Traditional Grid

Electromechanical system
Centralized generation

Few sensors

Manual monitoring & restoration
Failures and blackouts

Few customer choices

Wind
Turbines
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Cyber-physical system
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Smart Homes

Distributed generation (renewables)
Advanced sensing and power electronics
Self-monitoring & self-healing

Adaptive and reliable

Many customer choices
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Why Have a Smart Grid?

@ Enhance efficiency of existing generation

@ Facilitate deployment of renewable energy sources
@ Enable resilience to and self-healing from disruption
@ Automate maintenance and operation

@ Improve grid security

@ Smooth transition to electric vehicles and storage
@ Demand side management (consumer choices)

@ Enable new products, services and markets

@ l.e., greater efficiency, reliability and security

Source: National Institute of Standards and Technology. NIST framework and roadmap for smart grid interoperability
standards, release 1.0, http://www.nist.gov/public affairs/releases/upload/smartgridinteroperability final.pdf. January 2010.



Important Issues - Efficiency

The U.S. accounts for 4% of the
world's population while contributing
25% of its greenhouse gases.

25% <

If the U.S. grid were just
5% more efficient, the
energy savings would
equate to permanently
eliminating the fuel and
greenhouse gas emissions
from 53 million cars.



Important Issues - Reliability

003/45/7844

Blackouts and brownouts
occur due in part to the
slow response times of
mechanical switches, and
insufficient  “situational
awareness” on the part
of grid operators.

GeoStar 45
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Important Issues - Security

THE WALL STREET JOURNAL.

Subscribe Now | Signin
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POLITICS

Russian Hackers Reach U.S. Utility Control Rooms,

Homeland Security Officials Say

Blackouts could have been caused after the networks of trusted vendors were easily penetrated

Recommended Videos

Three Senate Seats
Republicans Need to
Defend

How Apple Fixed the
New MacBook Pro
Keyboard

Six Senate Seats
Democrats Need to
Defend

What's Fueling the
Rise in Gas Prices

The interdependencies of
grid components can
enable a domino effect —
a cascading series of
failures that could bring
banking, traffic, security,
communications, systems,
etc, to a complete
standstill.



Smart Grid — Some
Solutions & Challenges




Solution: Integration of Renewables

U.S. energy overview: Electric
generating capacity build by fuel type
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Solution: Integration of Renewables

U.S. electricity generation by fuel type (TWh)
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https://www.greentechmedia.com/articles/read/renewable-energy-generation-nuclear-bnef#gs.96pmsg



Renewables: Blowing in the Wind

Figure 96
Wind Energy Impact on Avoiding Carbon Dioxide Emissions
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Sulfur Dioxide and Nitrogen Oxides

Wind also helps cut significant amounts of air pollutants known for creating smog and triggering
asthma attacks. Reducing these pollutants helps to reduce rates of asthma and other respiratory
issues. These created $9.4 billion in public health savings in 2018 alone.




Renewables: Blowing in the Wind

Figure 97

Wind Energy Impact on Avoiding Water Consumption from Thermal Power Plants
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In 2017, wind energy generation reduced water consumption at existing power plants by
approximately 95 billion gallons—the equivalent of 723 billion bottles of water.



Renewables: Solar on Fire

Annual U.S. Solar Installations
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uture Development of Renewables

Plants sized by total MWh: 2K @ @ @ 6K
@ Plant in development, 2021-2025 O Existing plant

Plant type: ® Coal © Oil & Gas ® Nuclear/other ® Solar ® Wind ® Other renewables

Widespread development
of renewable generation.
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Offshore wind
farms are
planned for the

California has so much day-time o
£ A Atlantic coast

solar power that it sometimes ships
some of it to other states.

or
C% Abundant wind power in Texas

®®  has made the Lone Star state
the biggest wind state

Source: BloombergNEF



Challenge: Volatility of Generation
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supply and demand,” Energy Journal, 2017
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Challenge: Lack of Inertia
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AEMO releases final report into SA blackout,
blames wind farm settings for state-wide power

failure

By political reporier Nick Harmsen

Updated 28 Mar 2017, 1:01am

Overly sensitive protection mechanisms in
some South Australian wind farms are to blame
for the catastrophic statewide blackout in
September last year, the Australian Energy
Market Operator (AEMO) says.

In its fourth and final report into the September 29
blackout, AEMO said it was the action of a control
setting responding to multiple disturbances that led
to the 'black system'.

The report said the unexpected operation of the
control settings resulted in the sudden loss of
generation from the wind farms.

PHOTO: AEMO is working with industry to build power system
resilience. (AAP: Angela Harper)

Unlike traditional means
of electricity generation,
solar and wind generators
lack inertia.



Challenge: Bidirectional Flow

The presence of distributed generation
units in the network at low voltage levels
can cause reverse power flows that may

lead to complications in grid stability and
control.




Solution: Storage

»What’s an ESR?
Energy Storage Resources are devices

used to capture energy produced at

Capacitors

Components that

Need for Energy

one time for use at a later time.
Storage Resources
(ESRs) to compensate

for  volatility  of

renewable resources @
and their low inertia U

store potential energy

in an electric field

Superconductors
Systems that store
energy in a

magnetic field

Pumped Hydro
Water stored in a
reservoir to provide

energy on demand

=

w0,

Q)

V2G
Vehicle-to-grid
systems that use
electric cars for

energy storage

Thermal
Excess heat
stored for

later use

Flow Batteries
Batteries that
contain liquid
chemicals that

store energy

Lithium Batteries
Move lithium ions
between positive and
negative electrodes
to store energy



Solution: Advanced Measurement

and Control

Next-generation energy management systems to provide
greater situational awareness.

Use of high fidelity,
time synchronized
measurements to
improve all levels
of grid operation
and control.



Phasor Measurement Units (PMUs)

British Columbia

Phasor Measurement Units in
North American Power Grid
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PMUs allow more
frequent and accurate
estimation of the grid
state than traditional
grid instrumentation
(SCADA).



Challenge: Security

Greater Reliance on Sophisticated Data Infrastructure Leaves the Grid Vulnerable to
Cyber and Physical Attacks:

e Data injection attacks: change the grid state
estimates without changing the state
(compromised situational awareness)

* Physical injection attacks: change the grid
state without changing the state estimates
(could be implemented via a cyber attack)




Advanced Metering Infrastructure
(Smart Meters)

jon Level: 60-79%

‘l :
. $ “ (Source EIA: 2015)




Opportunity: Demand Response
(Smart Homes, Smart Buildings)

Electric Grid Demand Curve
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Changes in the electric load - such as reductions, increases, or shifts - by end-use
customers in response to specific market or system conditions.



Challenge: Privacy

« Smart meter data is useful for price-aware usage, load balancing.

« But, it leaks information about in-home activity.
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Challenge: Security

Hacked Water Heaters Could Trigger Mass Blackouts Someday | WIRED 10/15/19, 8:48 PM
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A botnet can control
How Hacked Water Heaters Could . .
Trigger Mass Blackouts loT devices to trigger

sz | ing grid fail
leave a country of 38 million people i the darke. e ereuane cascadlng gria raliure.
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Solution: High-Voltage DC

HVAC 800 kV

* Usually insulation materials can handle 3x more dc voltage than ac voltage, thus dc cables are

lighter and can deliver more power.
* Dc transmission lines are usually two-wire systems, while ac transmission lines are usually

three-wire systems, simpler tower structure.
* Dc transmission wires only have dc loss, while ac transmission wires have ac loss (due to skin

and proximity effects).



Challenge Grid Scale Power Electronics

400 MW HVDC Station Developed by ABB

http://www.offshorewind.biz/2016/03/10/abb-to-deliver-kriegers-flak-hvdc-converter-station/



Solution: Microgrids
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Reliable (diverse sources), efficient (avoids transmission losses), allow co-gen of heat and electricity.



Summary and R&D Needs
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Summary
The Internet of Energy

e Smart grid comprises a set of potentially disruptive
technologies that can produce greater efficiency, reliability
and security in the grid

e Examples include
o Integration of renewables

o Grid-scale storage advanced power electronics

o Advanced measurement, analytics and control

o Microgrids

e A lot of challenges remain



Smart Grid: R&D Needs
(An Incomplete List)

Storage technologies
Power electronics (conversion, control, etc.)
Advanced data analytics for greater situational awareness

Energy trading platforms (prosumer-to-prosumer, and
prosumer-to-grid)

Security at all levels

Privacy protections
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