Mathematicians

helping

Art Historians and Art Conservators Three examples:

Frescoes in Eremitani church in Padua, Italy Massimo Fornasier et al.

Three examples:

Frescoes in Eremitani church in Padua, Italy Massimo Fornasier et al.

New (re)attributions based on threadcounts Rick Johnson et al.

Three examples:

Frescoes in Eremitani church in Padua, Italy Massimo Fornasier et al.

New (re)attributions based on threadcounts Rick Johnson et al.

Virtually aging/rejuvenating paintings

1. Reconstructing destroyed frescoes,

Eremitani church in Padua, Italy

Massimo Fornasier et al.

August 1992: start of concerted large-scale effort to reconstruct the frescoes

First: cleaning, stabilizing, cataloguing of all fragments

Next (1995-97): digitization of numbered fragments on 38 CD-ROM

Fragments: number = 80,735

total surface = 77.47 sq. m

typical size: 5 to 6 sq. cm

Original size of lost painted area: > 800 sq. m

Very few contiguous fragments

For each fragment: location unknown

rotation unknown

Fast method needed to place each fragment!

Digitized images:

pixels → grey value: number between 0 and 255

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	49	50	65	82	103	0	0
0	0	51	68	73	93	93	0	0
0	0	62	85	96	116	104	0	0
0	0	68	97	121	128	115	0	0
0	0	83	98	123	123	112	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0
0	0	0	0	95	0	0	0	0
0	0	0	57	93	101	0	0	0
0	0	56	68	88	97	106	0	0
0	49	49	65	85	116	115	116	0
0	0	51	70	91	116	125	0	0
0	0	0	65	90	111	0	0	0
0	0	0	0	78	0	0	0	0
0	0	0	0	0	0	0	0	0

Represent the information in each fragment so that rotation is easy to compute/recognize:

use circular harmonics

The circular harmonics make it easy to find the representation of a rotated image **I**:

I can be decomposed into circular harmonics:

$$I = a1 H1 + a2 H2 + a3 H3 + a4 H4 + ...$$

Then the rotated version Rot(I) has the form:

> 50 volunteers from the universities of Padua, Venezia and Udine, from the departments of

Cultural Heritage Conservation, Art History, Literature, Philosophy, Psychology, Political Science, Mathematics and Engineering.

2. Automatic threadcounting for

paintings on canvas

Rick Johnson et al.

3. Virtual aging/rejuvenating of paintings

on panel: the Ghissi project

Collaboration Duke University & North Carolina Museum of Art

First a digression on how

"Mathematics and Image Analysis for Art Conservation and Art History"

became part of what I do.

Lady 6mm Under

About 9 years ago: started work on applications of image analysis to art history art conservation

First projects: distinguishing style distinguishing originals from copies

Determine information at different scales

Determine information at different scales

Determine information at different scales

and find the difference

blur

Determine information at different Scales

Difference = A - B

Determine information at different Scales

Difference = A - B

Determine information at different Scales

Based on wavelet features: defined distance between patches of paintings

→ visualize similarity

(movie)

Next: other types of challenges

Joris Dik

and

Koen Janssen

Van Gogh:
Patch of Grass
(Paris period)

Van Gogh:
Patch of Grass
(Paris period)

X-ray shows portrait from Nuenen period

As

Sb

Reunited

An art historical and digital adventure

Ghissi altarpiece: 3 panels in NCMA

1 in Portland Art Museum

3 in Metropolitan Museum of Art, NY

1 in Art Institute, Chicago

1 missing ...

Charlotte Caspers

Artist
Art Conservator
Art Reconstruction

commissioned by NCMA to recreate the missing panel

The story followed the life of St. John the Evangelist as described in the "Golden Legend", a medieval bestseller.

This allowed a guess for the topic of the missing scene

Problem: new panel is so beautiful: vivid colors, shiny gold, sparkling accents

Authentic 14th century panels would look dull and faded in comparison ...

Use image analysis and image processing to "age" the panel; aged copy can then be displayed next to old panels, and new panel separately.

To do "virtual aging":

- determine color correspondences, and use them to "remap" colors
- introduce cracks
 (need to study existing craquelure for this)
- * "age" gold-leaf work

Printout of virtually aged Caspers panel was used for the "Reunited" exhbition in NCMA, Sept 2016-March 2017, and now in Portland Museum of Art (Oregon)

Can then also "virtually rejuvenate" old panels:

- detect and inpaint cracks
- using color correspondences determined earlier, "remap" old colors to "new"
- * rejuvenate gold-leaf work

Studying and Removing Cracks

Craquelure: very dense – not easy to detect automatically all cracks and only cracks ...

Ghent Altarpiece

15th century, Flemish

Jan Van Eyck

Old colors

Rejuvenated colors

Aged colors

New, fresh colors

Crack Generation

Crack Generation

Putting "new" gilding on rejuvenated panels

(show movie)

b

3 16 10 20 10 10 10

The same of the sa